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The frequency characteristics of the acoustic wave transmission in a medium with mean
#ow are considered. One approach is to solve the Helmholtz equation with mean #ow
medium in original co-ordinates, which is directly discretized for the one-dimensional and
the axisymmetric FEM. Another approach is to transform the equation into the standard
Helmholtz equation, which is discretized for the axisymmetric FEM and the three-
dimensional BEM. The numerical models are examined "rst for a straight circular duct. The
solutions by the numerical approaches are compared with the analytical solution. The
examination is then extended to the case when the mean #ow is locally present in the mu%er
with expansion chamber. To model the spatial mean #ow in the BEMmodel, the partitioned
domain approach is also developed. No shear e!ect between the two regions are included.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

A duct with variable cross-section is the acoustic wave transmission system which has an
important "eld of applications. Its numerical solution has been arrived at by many
investigators [1}5]. Its acoustic wave transmission characteristic is however a!ected by the
presence of the medium motion. First of all, the propagation velocity may decrease for the
waves against the stream, while it may increase for the waves along the stream. This is the
case when the waves transmit in the exhaust mu%er of the automobiles and also in the vocal
tract. The wave equation and Helmholtz equation under such a condition have already
been presented in the book by Munjal [6] in which analytical solution in one dimension is
also given. Some experimental investigations were made in the dissertation by Chattajee
[7]. For two and three-dimensional counterparts, the numerical approach must be devised.
The boundary element approach was presented by Zhenlin et al. [8], in which the
equation is transformed to the standard Helmholtz equation by means of the co-ordinate
transformation. All the treatments are made for the steady state waves in frequency domain.
For the time-domain wave propagation in mean #ow, the present authors proposed the
discrete Huygens approach [9].
In the present paper, the analytical solution in one dimension is extended to the case of

the general impedance termination. The numerical solution by the "nite element approach
is compared with the analytical solution. The "nite element modelling is then applied to the
axisymmetric case in which the formulation is made both for the original and transformed
co-ordinates. The boundary element approach presented by Zhenlin et al. is extended to the
�Present a$liation: Kyosera-Mita Co. Ltd., Osaka, Japan.

0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



850 T. TSUJI E¹ A¸.
case of the spatial mean #ow, which is treated by the partition domain approach. Numerical
examples for the duct with an expansion chamber are then demonstrated.

2. GOVERNING EQUATIONS

2.1. WAVE EQUATION IN THE MEDIUM IN MEAN FLOW

Here, we consider the sound wave propagation in a medium with uniform and steady
state mean #ow. The medium is also assumed to be homogeneous and non-dissipative. The
#uid dynamics is expressed in terms of three basic dynamics equations [6]. The "rst is the
equation of continuity,
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equation of motion,
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where p is the sound pressure. The last is the equation of the state, when the pressure is
expanded about the ambient pressure,
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when the entropy is constant, c
�
is the sound speed at small amplitude. These equations can

be linearized by discarding the second order terms to form
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From these equations, the linear wave equation in a medium in mean #ow can be derived as
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where M"V
�
/c

�
is Mach number of the mean #ow.

The particle velocity u and the sound pressure p can be expressed in terms of the velocity
potential �, as
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Wave equation (8) can be rewritten for the velocity potential as
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In the steady state harmonic motion (�"�e���, where� is the amplitude of the potential,
�"2�f is the angular frequency and f is the frequency), wave equation (11) can be expressed
as

� ��#k��!j2k (M ) ��)!(M ) � ) (M ) ��)"0, (12)

where k"�/c
�
is the wave number. In the following analysis, the medium is assumed to be

moving in the z direction, so that the governing equation is given by
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where M
�
is the mean #ow Mach number in the z direction.

2.2. HELMHOLTZ EQUATION IN TRANSFORMED CO-ORDINATES

With the following co-ordinate and variable transformations,

xJ "x, yJ "y, zJ "
z
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equation (13) leads to the standard Helmholtz equation with respect to �I as

�I ��I #kI ��I "0, (16)

where �I � is the Laplacian operator in the transformed co-ordinates. This expression is
numerically solved by Zhenlin et al. [8] with the help of the boundary element approach.
The equation is thus simpli"ed at the expense of the complicated boundary conditions. This
means that the numerical analysis program such as the "nite elements or boundary
elements developed for the standard Helmholtz equation can be used without modi"cation,
but with the potential and the boundary conditions re-de"ned.

3. ONE-DIMENSIONAL FIELD

3.1. MODEL

Now, we consider the wave transmission in a duct as shown in Figure 1. The duct is
driven by uniform velocity ;

�
at one end (z"0) and it is acoustically terminated by the

surface acoustic impedanceZ
�
at another end (z"l). The boundary conditions for this case



Figure 1. A duct in mean #ow.
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correspond to
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where �/�n is the normal derivative to the boundary and 	
�
"Z
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c
�
is the termination

impedance normalized with respect to the characteristic impedance of the medium.

3.2. ANALYTICAL SOLUTION

For the one-dimensional "eld in which the wave propagates toward the z direction,
equation (13) is reduced to
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The general solution is of the form
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where C
�
and C

�
are the coe$cients to be determined. The "rst term on the right-hand side

expresses the sound propagating to the z direction and the second term the one propagating
to the reverse!z direction. From equations (9) and (10), the particle velocity and the sound
pressure are, respectively, obtained as
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The coe$cients C
�
and C

�
are determined by the boundary condition. The analytical

solution for the sound pressure under boundary condition (17) is

P(z)"
!(�

�
c
�
!Z

�
)e!jk(l!(1#M

�
)z)/(1!M�

�
)
#(�

�
c
�
#Z

�
)e jk(l!(1!M

�
)z)/(1!M�

�
)

(�
�
c
�
!Z

�
)e!j kl/(1!M�

�
)
#(�

�
c
�
#Z

�
)e j kl/(1!M�

�
) �

�
c
�
;

�
. (22)

3.3. FINITE ELEMENT FORMULATION

We solve equation (18) by the "nite element method. The equation is discretized in space
by a Galerkin's procedure. The weak formation is
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where � is a weighting function and � denotes the boundary. In the Galerkin's method, the
weighting function is usually chosen to be the test function (�"�). The right-hand side of
equation (23) corresponds to the boundary condition (17). The one-dimensional region to
be analyzed is divided into line elements. The velocity potential in an element is interpolated
by the nodal velocity potentials so that
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where ���
�
is the nodal velocity potential vector, �N� is the interpolation function vector.

The superscript T denotes the transpose of matrix or vector. The velocity potential is here
assumed to be linearly interpolated within a line element.
Substituting equation (24) into equation (23), one has the discretized equation for an

element
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where [M]
�
, [K]

�
, [<]

�
and [J]

�
are inertance, elastance matrices, the matrix associated

with mean #ow and the wall dissipation and �=�
�
is the distribution vector. It should be

noticed that the matrix [<]
�
associated with the mean #ow is non-symmetric. The presence

of the #ow may act as a damping.

4. AXISYMMETRIC FIELD

4.1. FINITE ELEMENTS IN ORIGINAL CO-ORDINATES

For the axisymmetric "eld, equation (13) can be expressed as
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Galerkin procedure for the axisymmetric "eld leads to another weak form as
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Figure 2. Simple duct and mu%er.

Figure 3. Numerical models for a simple duct: (a) one-dimensional FEM model; (b) axisymmetric FEM model;
(c) three-dimensional BEM model.
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In the axisymmetric case, the cross-sectional area to be analyzed is divided into triangular
ring elements. The test function has the same form as equation (24), but with three nodes.
The "nal discretized expression is again the same as the one-dimensional case (equation
(25)).



Figure 4. Sound pressure distributions along the central z-axis in a simple duct for various Mach numbers
M ( f"2 kHz and the duct is terminated at one end by the rigid wall Z

�
"R).
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4.2. FORMULATION IN TRANSFORMED CO-ORDINATES

4.2.1. Finite element formulation

In the transformed co-ordinates, the Helmholtz equation is obtained from equation (16)
for the cylindrical co-ordinates and the expression is
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TABLE 1

Sound pressure at several points along the central z-axis in a simple duct for various Mach
numbers (the duct is terminated at one end by rigid wall Z

�
"R)

Axisymmetric
Analytical 1D Axisymmetric FEM in transformed

M z (m) solution (Pa) FEM FEM co-ordinates BEM

0 0)000 145)901 146)019 145)999 145)999 150)179
0)025 395)549 395)630 395)554 395)554 403)535
0)050 360)656 360)670 360)668 360)668 352)967
0)075 39)140 39)105 39)104 39)104 35)022
0)100 313)483 313)535 313)527 313)527 311)015

0)1 0)000 126)730 126)854 126)741 126)922 131)631
0)025 385)343 385)424 385)372 385)324 394)122
0)050 362)117 362)126 362)075 362)179 354)617
0)075 45)693 45)656 45)595 45)717 41)744
0)100 307)728 307)777 307)834 307)705 304)462

0)2 0)000 69)080 69)225 68)819 69)579 75)515
0)025 356)419 356)499 356)549 356)303 366)471
0)050 369)560 369)548 369)381 369)750 361)229
0)075 65)968 65)918 65)676 66)176 61)550
0)100 294)163 294)199 294)461 293)925 288)832

0)3 0)000 33)123 32)910 33)864 32)003 24)555
0)025 311)633 311)716 312)038 311)226 325)269
0)050 395)093 395)020 394)755 395)412 384)446
0)075 105)029 104)941 104)370 105)597 98)676
0)100 284)331 284)331 284)997 283)638 275)448

Figure 5. Frequency characteristics of the sound pressure at the termination end (Z
�
"R, z"0)12 m) in the

simple duct with various Mach numbers M.
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where �
 is a weighting function. The test function, as well as the weighting function, is
chosen as

�� "�N����I �
�
, (32)



Figure 6. Sound pressure distributions along the central z-axis in the simple duct for various Mach numbers
M ( f"2 kHz and the duct is terminated by the characteristic impedance Z

�
"�

�
c
�
).

TABLE 2

Sound pressure at several points along the central z-axis in a simple duct for various Mach
numbers (the duct is terminated by the characteristic impedance Z

�
"�

�
c
�
)

Axisymmetric
Analytical 1D Axisymmetric FEM in transformed

M z (m) solution (Pa) FEM FEM co-ordinates BEM

0 0)000 408)000 408)042 408)035 408)035 393)086
0)025 408)000 408)025 407)956 407)956 406)361
0)050 408)000 408)028 408)024 408)024 399)025
0)075 408)000 408)045 407)972 407)972 385)829
0)100 408)000 408)032 408)027 408)027 389)083

0)1 0)000 408)000 408)059 408)057 408)064 389)423
0)025 408)000 408)038 407)975 407)965 406)521
0)050 408)000 408)041 408)042 408)049 399)183
0)075 408)000 408)062 407)994 407)985 383)477
0)100 408)000 408)047 408)047 408)054 386)932

0)2 0)000 408)000 408)078 408)078 408)110 386)961
0)025 408)000 408)053 407)994 407)981 407)193
0)050 408)000 408)051 408)056 408)087 401)005
0)075 408)000 408)078 408)016 408)004 382)672
0)100 408)000 408)061 408)065 408)097 385)252

0)3 0)000 408)000 408)094 408)097 408)187 391)118
0)025 408)000 408)070 408)016 408)013 412)941
0)050 408)000 408)055 408)066 408)150 407)961
0)075 408)000 408)092 408)035 408)035 389)497
0)100 408)000 408)074 408)082 408)169 388)638
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where ��I �
�
is the nodal velocity potential vector in the transformed co-ordinates. The

discretized equation in the transformed co-ordinates is derived as
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Figure 7. Frequency characteristics of the sound pressure at the termination end (Z
�
"�

�
c
�
, z"0)12 m) in the

simple duct for various Mach numbers M.

Figure 8. A mu%er with expansion chamber and element division: (a) axisymmetric FEM model;
(b) three-dimensional BEM model.
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where [MI ]
�
, [KI ]

�
and [JI ]

�
are inertance, elastance and damping matrix associated with the

termination wall in the transformed co-ordinates and �=I �
�
is the distribution vector in the

transformed co-ordinates. The discretized equation is the same as the ordinary "nite
element expression. This means that the "nite element program developed for the standard
Helmholtz equation can be used without modi"cation, but with the potential and the
boundary conditions re-de"ned as given in equation (30).



Figure 9. Sound pressure distributions along the central z-axis for various radii of the expansion chamber
r
�
when there is no #ow ( f"2 kHz, M"0 and the mu%er is terminated by the characteristic impedance

Z
�
"�

�
c
�
).

Figure 10. Frequency characteristics of the sound pressure at the termination end (M"0, Z
�
"�

�
c
�
,

z"0)12 m) for various radii of the expansion chamber r
�
when there is no #ow.
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4.2.2. BOUNDARY ELEMENT FORMULATION

The present formulation is somewhat modi"ed from that of Zhenlin [8]. To avoid
complexity, the Helmholtz equation in the transformed co-ordinates (equation (16)) is used
instead of equation (13). The boundary element integral expression corresponding to
equation (16) is

C
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�I

�
"�� ��I *

��I
�nJ

#

��I *
�nJ

�I �d�, (34)

where �I * is the fundamental solution

�I *"
1

4�RI
e!jkI RI (35)

which is the Green function without particular boundary condition imposed. RI is the
distance from a source point to the consideration point.C

�
is a coe$cient related to the solid

angle at point i, which becomes 1/2 if the boundary is smooth. By dividing the boundary



Figure 11. Sound pressure distributions along the central z-axis in the mu%er for various Mach numbers
M ( f"2 kHz, r

�
"0)02 m, Z

�
"�

�
c
�
).

Figure 12. Frequency characteristics of the sound pressure at the termination end (Z
�
"�

�
c
�
, z"0)12 m) in the

mu%er for various Mach numbers M (r
�
"0)02 m).

Figure 13. The mu%er when mean #ow is localized in the central region.
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� into the surface boundary elements to execute an integral evaluation of equation (34), the
discretized equation is obtained for the velocity potential �I and the #ux qJ de"ned at the
element nodes [10].

[HI ]��I �"[GI ]�qJ �. (36)



Figure 14. Partitioned boundary element model of a mu%er.
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With the help of equations (15) and (29), equation (36) can be transformed into the
expression at original co-ordinates, so that

[H]���"[G]�q�, (37)

where
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With equation (37), no special care is required for the boundary condition at the expense
that the re-evaluation of the components in the coe$cient matrices must be made. The
boundary element program developed for 3D acoustic "eld [10] cannot be used as it is,
which must be modi"ed so that the coe$cient matrices are re-evaluated by equations (38)
and (39).

5. NUMERICAL DEMONSTRATIONS

For the numerical demonstrations, we consider two ducts: one is a simple duct as shown
in Figure 2(a) and another is a mu%er with expansion-chamber as shown in Figure 2(b). The
length of the ducts is l"0)12 m and the radius is 0)01 m but the expansion chamber's radius
r
�
is 0)01}0)03 m. The duct is driven at one end (z"0) by the uniform velocity ;

�
"1 m/s

and at another end (z"l), it is terminated by the sound absorber with the surface acoustic
impedance Z

�
. Other wall boundary is assumed to be rigid. The medium is assumed to be

air (�
�
"1)2 kg/m� and c

�
"340 m/s).

5.1. A SIMPLE DUCT

The "nite element and the boundary element division for a simple duct are illustrated in
Figure 3. The "eld is divided into 120 line elements for the one-dimensional FEM model.



Figure 15. Comparison between the single domain model and the partitioned domain model for the sound
pressure distributions along the central z-axis when the #ow is uniformly presented in the mu%er ( f"2 kHz).

Figure 16. Comparison between the single domain model and the partitioned domain model for the frequency
characteristics when the #ow is uniformly presented in the mu%er.
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For the axisymmetric FEM model, the cross-sectional area of the "eld is divided into
triangular ring elements, in which the division is (z : r)"(120 : 10). For the three-
dimensional BEM model, the surface of the duct is divided into 1060 triangular surface
elements. The velocity potential is linearly interpolated in an element for all models. The
mean #ow is along the z-axis and uniform across the duct. All computations are carried out
on the personal computer (VT-Alpha 533, Visual Technology-Japan, with Compaq Alpha
21164A, 533 MHz chip and 256 MB RAM) with Linux OS.
The sound pressure distributions along the central z-axis at the driving frequency of

2 kHz are shown in Figure 4, when the duct is terminated at the other end with the rigid wall
(Z

�
"R). The "nite element solutions agree well with the analytical solution (22). As they

are overlapped except the BE solutions, the sound pressures calculated by the "ve methods
are tabulated in Table 1 for several points along the central z-axis. With the boundary
element solution, the wavelength is evaluated slightly longer than the analytical solution.
The transfer frequency characteristics are shown in Figure 5 for the sound pressure at the
center of the termination wall when uniform mean #ow is present. As the Mach number
increases, the resonance peaks move lower in frequency.



Figure 17. Comparison between the sound pressure distributions with the uniform mean #ow and the partial
mean #ow for M"0)1 and f"2 kHz.

Figure 18. Comparison between the frequency characteristics with the uniform mean #ow and the partial mean
#ow for M"0)1.
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The sound pressure distributions when the duct is terminated by the characteristic
impedance Z

�
"�

�
c
�
are shown in Figure 6. The sound pressures calculated by the "ve

methods are tabulated in Table 2 for several points along the central z-axis. The "nite
element solutions again agree well with the analytical solution within the error of 0)05%. In
the boundary element solution, a slight re#ection is observed. This is perhaps due to the
improper discretization near the corner edges. The error is smaller in phase than the
amplitude. The frequency characteristics are shown in Figure 7. The "nite element solutions
again show no re#ection in amplitude while the boundary element solution shows an error
of as much as 9)3%.

5.2. A MUFFLER WITH EXPANSION CHAMBER

The "nite element division and the boundary element division of a mu%er with expansion
chamber are, respectively, illustrated in Figure 8. For the axisymmetric FEM model, the
cross-sectional area of the "eld is divided into 1800 triangular ring elements. For the
three-dimensional BEM model, the surface of the mu%er is divided into 1300 triangular
elements. The mu%er is non-re#ectively terminated by the characteristic impedance at the
end.



Figure 19. Comparison between the sound pressure distributions with the uniform mean #ow and the partial
mean #ow for M"0)3 and f"2 kHz.

Figure 20. Comparison between the frequency characteristics with the uniform mean #ow and the partial mean
#ow for M"0)3.
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First, the case when there is no #ow is considered. The sound pressure distributions along
the central z-axis are shown in Figure 9 when the radius of the expansion chamber is varied.
The di!erence in amplitude between the "nite element solutions and the boundary element
solutions becomes more evident for this example as the radius of the chamber increases. The
element division or the element size must be responsible for this. This di!erences in phase
are relatively small. The frequency characteristics are shown in Figure 10. There are two
resonance peaks in this frequency range. The di!erence in peak amplitude becomes larger as
the radius of the chamber increases.
Figures 11 and 12 show the sound pressure distributions and the frequency transmission

characteristics of the mu%er (r
�
"0)02 m) when mean #ow is uniformly present. There are

some di!erences in amplitude between "nite element and boundary element solutions but
the di!erences are small in phase. The resonance peaks move lower in frequency as the
Mach number increases.

5.3. CHARACTERISTICS WHEN THE PARTIAL MEAN FLOW IS PRESENT

In conventional mu%er systems, however, the #ow may be restricted only in the central
region andmay not be present in the part of the expanded chamber. Figure 13 illustrates the
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model with the partial mean #ow in which the #ow is present only in the central duct. In
order to consider the partial mean #ow in the boundary element modelling, the "eld is
divided into two domains as shown in Figure 14 in which the simple duct with the uniform
mean #ow (domain �

�
) is coupled to the expansion chamber without #ow (domain �

�
).

Continuity conditions are imposed over the connecting surface.
To verify the approach, the sound pressure distribution and the frequency transmission

characteristic are examined, which are shown in Figures 15 and 16, in which the #ow
uniformly presents both in�

�
and �

�
. The agreement is reasonable. Figures 17}20 show the

case of the partial mean #ow, when the #ow only presents in domain�
�
forM"0)1 and 0)3.

There are small di!erences between the uniform #ow and the partial #ow for small Mach
number, while the amplitude decreases at the resonances and their peaks move lower in
frequency as theMach number increases. The e!ect of the presence of the partial #ow on the
characteristic is obvious for larger Mach numbers.

6. CONCLUDING REMARKS

The "nite element and the boundary element methods are applied to the acoustic wave
transmission characteristics evaluation in a medium with mean #ow. For the numerical
demonstrations, the one-dimensional FEM model, the axisymmetric FEM model and the
three-dimensional BEMmodel are examined "rst for a straight circular duct. The solutions
by the numerical approaches are compared with the analytical solution. Then, the
examination is extended to the case when the mean #ow is locally present in the central part
of the mu%er with expansion chamber. To model the spatial mean #ow in the BEMmodel,
the partitioned domain approach is developed. No shear e!ect between the two regions is
considered. The following are the deduced conclusions:

(1) Both "nite element and boundary element models give reasonable prediction for the
acoustic wave transmission characteristics in a medium with mean #ow, which proves
the validity of the present modellings.

(2) The resonance peaks move lower in frequency as the Mach number increases.
(3) The e!ect of the presence of the partial #ow is more pronounced as the Mach number

increases.
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